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general classical relativistic equation of motion for an arbitrary multipole point panicle, 
in an extemal electromagnetic field, in Minkowski space, is derived. The formula is formally 
obtained from the singular solutions of Maxwell's equations and the definition of the 
energy-momentum tensor neglecting radiation reaction. As a particular application of this 
formula, we extract the general equation of motion for a point panicle possessing up to 
quadrupole moments. 

1. Introduction 

As is well known, the equation of motion of a point charge in an external electromagnetic 
field, without considering self-field effects, is governed by the Lorentz force. On the 
other hand, for a point charge endowed with a magnetic moment there is controversy 

more complex when we wish to discuss the problem of how a general multipole point 
particle moves through an external electromagnetic field. 

There are some papers in the literature (e.g. [3-61) concerned directly or indirectly 
with this problem. However, in spite of these works, the fundamental question of what 
can be extracted from Maxwell's equation and local conservation laws, has not been 
answered in full. The main reason is perhaps due to the non-integrable singularities 
of the electromagnetic field produced by the multipole. These singularities are not a 
problem for the case of a point charge (in the external field approach). However, they 
are an obstacle for other multipole moments. In order to avoid these singularities, 
additional prescriptions, obscuring the relation with the Maxwell's equations, are 
introduced (see e.g. the discussion for the 'simple' case of a charge-dipole particle in 
[7j). Among these prescriptions, we should mention the basic relation of charged 
matter moving in an electromagnetic field, F'", that is, 

^L ̂..I :." " &:-- -'---Le- /""" ^ -  r l l  - -,<7 ..-A r-7, C..:-l^-rl . .  .L^ -: ...-. :-.. :- 
a " u " L  l l D  SqU'L'L",' U, lllULLUll ,355 r.5. L'J, p ,_I,, nllu LLJ,. r;vrucn,ry L11S SIIUaLIuLL 15 

a,#:,=-F'*j, (1.1) 
where Orm is the electromagnetic energy-momentum tensor and j ,  the charge-current 
four-vector. 

Equation (1.1) is a postulate since it has not been proved for point charge-current 
modeis. Additionaiiy, (i .i  j must be suppiemented with a maihemaiicai meaning since 
j a  is not a mathematical function of the space-time points. Usually (1.1) is represented 
as a derivative in the distribution sense in several ways. However, this point of view 
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is inconsistent even in the approximation of an external field, that is, when F" 2 F;;. 
In fact the divergence of 0% cannot be established before defining O r m ,  We have to 
define OYm first and then derive (1.1) or its rigorous equivalent. 

The purpose of this paper is to show, without taking into account self-interaction 
effects and from as general a viewpoint as possible, what can be extracted from 
Maxwell's equations and local conservation laws, for multipole point particles, when 
the electromagnetic field and the energy-momentum tensor, as well as the charge 
current, are well defined distributions. Using a distribution theory, we have been able 
to extract neatly the information contained in the singularities of the field. This direct 
treatment of these singularities is the main difference between our approach and 
previous results. 

As our main result, we shall obtain a formula, equation (3.9), which allows us to 
give a straightforward derivation of the most general equation of motion for an arbitrary 
multipole point particle in an external electromagnetic field. As we shall see, this 
formula determines in which sense (1.1) can be extracted from Maxwell's equations. 
Accordingly, we regard the question of giving an equivalent of ( l . l ) ,  for point particles 
in the external field approach, as having been settled in section 3. 

A particular application of (3.9), for the case of a particle endowed with charge, 
dipole and quadrupole moments, is explicitly considered. Part ofthe obtained equations 
agree with eariier theories except for the expiicit obtaining oithe dynamicai contribution 
of the external electromagnetic field to the 'internal' energy-momentum properties of 
the multipole particle. In earlier theories these terms do not appear for the general 
multipole, even though they are well known in the dipole case. For example, there 
exists the magnetodynamic effect which has momentum associated with the vector 
product of the external electric field and the magnetic moment [ 8 ] .  

Throughout this paper the metric tensor will have signature +2, and the speed of 
light is taken as 1. When convenient, indices on vectors and tensors will be omitted 
and scalar products will be indicated by a dot. Parentheses (. . .) and brackets [. . .] 
will denote total symmetrization and antisymmetrization respectively, of the enclosed 
indices [5,9]. The multipole world line (MWL) is z ( T ) ,  where T is the proper time, 
U(.)= u ( u 2 =  -1) and a ( 7 ) =  a ( u . a  = 0 )  are the four-velocity and four-acceleration 

D.+"-A~A c,.,..~i.,-+ap ..,ill hn ...n~ i- ,.... n-in..~"+i,.-o a n  r in i  -..A 

[ll]). Accordingly, for any space-time point x, we define R = x - z ( T , ) ,  R . R = O  
( R o > O ) , p - - u . R ,  u - R l p  -U, 7,beingthevalueofthepropertimeontheintersection 
between the light cone, with the apex at x opening into the past, and the MWL. 

By a, we denote an arbitrary open bounded connected region of the space-time 
that contains at most a connected segment of the MWL. The set of test functions consists 

[12,13]. Topologized in the usual manner [13], this set is denoted by %(a). A 
distribution is a continuous linear functional on %(a). A tensor distribution is con- 
sidered as a family of several distributions (one distribution for given indices). By 

' * " Y b C L ' . ' . J .  I.cLmI"L" C""L"I I .c lLCI  W.L. "b Y I l "  1.L "U, C P l C Y l P L L " L L I  ,ab- C.8.  L ' Y J  clLII" 

of .!! infi.ni!e!y diEeren!i.b!e comp!ex-v.!.ed fcnr?ions hzving campar! scppor! in sl 

G %(a), we mean the linear subspace of all 4 E %(a), such that 

exists. Here 
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By '&,, c %(a), m = 0, 1,2,. . . , we denote the set of functions in %(a) such that 
all the derivatives, of order up to and including m, vanish at the MWL included in a. 

A point particle is characterized by the following distributions [SI: 

(T)J,, . . . Jmn8[X - 2(T)1 ( 1.4) I N 
j * ~  (-1)" dTmm"r-"+ 

"=n 

which represent the charge-current distribution and the particle energy-momentum 
tensor concentrated in the MWL respectively. By definition: 

where J., . . . J,.+[~(T)]- J., . . . J ~ n + [ x ] ~ x ~ x ~ , l .  K "  isdefined analogously.Thecurrent 
multipole moment of order n has the following properties [5,14]: 

(1.7) 11, --.",~,="P =m(., ... P,.,)IOd'l 
6ii 

The current multipole of order zero is mp = eu', with e the total charge of the 
particle. That is, m" describes the monopole structure of the point source. The current 
multipole of order 1, m[=+', describes the electromagnetic dipole and so forth. 

Without loss of generality, we suppose that the energy multiple of order n has the 
following property: 

rial. (1.10) " r"",  ... "" - -0 
0 . 0  

This paper is organized as follows. In section 2, the general form of the distribution 
definition of the energy-momentum tensor for the multipole point particle in the 
external field is developed. In section 3, the divergence of the electromagnetic energy- 
momentum tensor is calculated. In section 4, the general form of the equation of 
motion for a point particle possessing monopole, dipole and quadrupole charge-current 
moments is derived. Finally, section 5 is devoted to concluding comments. 

2. Distribution definition of the energy-momentum tensor 

The aim of this section is to discuss the distribution form of the total energy-momentum 
tensor for our multipole point particle and the electromagnetic field. 

The electromagnetic field is considered as a continuous linear functional from 
D(a) into the set of skew-symmetric complex tensors of rank 2, which satisfies 
Maxwell's equations: 

( a F ' " ,  +) = 4 7 U ,  +I  V+ E B(n) (2.1) 

(J[.F"*', +) = 0 v4 E wn) (2.2) 

where j" is the vector distribution defined by (1.6) 
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The electromagnetic field can be decomposed as 

F =  Fe,,+ Fret 
where the non-singular part, Fe,,, satisfies Maxwell's equation for vacuum and F,,, is 
the retarded distribution solution of (2.1) and (2.2). Introducing the four-potential 
distribution A" defined by 

2(A[", JP'q5)- (F::, q5) vq5 E (2.4) 

we obtain, in the Lorentz gauge, that A" is given by 

(A", q 5 )  = a,, . . . Jmaq5) V 4  E %(a) (2.5) 

where 

It is straightforward to verify, replacing (2.6) in (2.5) and then in (2.4), that Fre, given 
by (2.4) is a particular solution of Maxwell's equations (2.1) and (2.2). This gives, 
formally, the usual solutions found in the literature. 

Following Poincar6 [15] and von Laue [16], the total energy-momentum tensor is 
written as 

e*"-K"+ey ,  (2.7) 

where K "  is given by (lS), and Or, is well defined on E through (1.2) and (1 .3) .  
Taking into account the superposition shown in (2.3), we obtain (in anobvious notation) 
the following splitting: 

e.,,= eex,+e,i,+ere,. (2.8) 

Since Fex, is not singular, Oext defines a regular distribution (through (1.2)). On the 
other hand, except for the monopole case, Bmi, is singular and does not define a regular 
distribution. Let us recall that, even though the singularities of e,=, are stronger, we 
shall not take them into account since we do not consider self-interaction effects 
(external field approach). In consequence the singularities of Omi, will be our only 
concern. 

As long as + E  0, emi, is a well defined functional. Then, our problem is to extend 
this functional on to the whole space, B(fl), in such a manner that its extensions are 
distributions, and to determine the degree of arbitrariness of such extensions. A similar 
task was achieved in [I71 for the monopole case taking self-forces into account. We 
shall call these extensions 'renormalizations'. Let us now look for the 'renormalizations' 

Note that Om;, defines a regular functional in g N - ,  (N, N 3 1, is defined by (1.4)), 

(OSx, +)=I OSx(x)4(x)d4X vq5 E E N - ,  . (2.9) 

Then, choosing (2.9) as our 

of emiX. 

that is 

It is easy to prove that the set E, for Om;,, is 
starting-point, we are not changing the theory where it is well defined. 
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Now, we can obtain an extension of (2.9) for 4 E B(n). In fact, using the equivalent 
of (2.4) and (2.5) in functional form ( p  # 01, the functional definition of B,,, ( p  # 0) 
and integrating by parts, (2.9) can also be written as 

4m(e%, 4)=4~(e%[e],  4)+ X B m 2  3"". . .J"2[Fg,J'4] 

+ d4~Ba,...omeJ=". . . J"2[F::J'+] 

- [ d4xBm2 ...(." "ap".  .. Ja2[Fr:J.q5] 

- I d4x BB,,...,+,~"-. . . J"2[g""FyzJ&] 

+ d4xB8, *... ,naJ"". . . J".[(J+F~t+J'Frz)q5]] 

J 

(2.10) 

I 
Wz-" . "  - = d = , ~ = , = ~ . ' . = ~ = ~ d = , ( ~ ]  p #O (2.11) 

V 4  E EN-, 

where 
(I, ... Y"Ol 

"-2 D r - i  :- *I.- ~ -_""_-- A:-- m,.-+-:~..t:n- -c.I.-.------~- I- /, 11, a:" A L - - A  all" YmirLCJ 1D ,,IC c u L L r J p " r r u r L r g  C U I I L I I U " L . U , I  U, , l l G  rnur,uyurv. 111 ,L.", -L1 13 UCIIIIG" 

as a function whenever p # 0. Since B is a locally integrable function (by hypothesis 
Fe,, is a function defined in such that it has continuous derivatives of order up to 
and including N+l ) ,  the right-hand side of (2.10) defines a linear and continuous 
functional on B(n). Therefore, (2.10) provides one of the renormalizations that should 
be sought. 

We shall write the distribution obtained through (2.10), which is not e,,.[e], as 
Ores. Specifically, we define 

(e,,,, 4)-(e, , ,[e1,4)+(~,~, ,  4)  v4 E wn) (2.12) 

with the left-hand side interpreted as in (2.10). 

renormalization, then necessarily, 
Obviously, e,,,(e)+8,., is not the unique extension of (2.9). If is another 

(e,,,-e,,,[e~-e~,,, 4 ) = 0  v4 E EN- ,  . (2.13) 

That is, the distribution Oren - e,,,[ e] - ereg vanishes on EN- ,  . In other words, the order 
and the support of eren- B,,,[e] - ere, are at most N - 1 and the MWL respectively, 

Thus, the most general renormalization of (2.9) is 
,I .", \'.,*, II - 0  T ^ l L I I  I *  

wren- OmixLCJT W7.g 

where A is a distribution of order at most N - 1, in n, having support at the MWL. 

For physical reasons, distributions whose supports consist of isolated points will 
not be considered. Consequently, the general form of A is of the type given in (1.5) 
with M at most equal to N - 1. 
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From these considerations, we conclude that the general form of 0 can be written 
as 

e = K + e,,,[e]+ e,,,+ oext (2.15) 

where the arbitrariness in the renormalization of e,,,, A, has been left to the material 
energy-momentum tensor K. This is always possible because A has finite order and 
support at the MWL. 

This splitting of 0 in a part concentrated at the MWL, K,  and the other part, &,,, 
is the physical one. The part concentrated at the MWL should be properly called the 
particle energy-momentum tensor (the contribution of the field in K is considered as 
part of the particle). On the other hand, e,,, represents the contribution to 0 of the 
pure Maxwell's field. As a matter of fact, OeI, is the only part of 0 which vanishes as 
the external field goes to zero. Therefore, it is physically unreasonable to consider any 
other marhemaricaiiy vaiid extension of eel,. 

Equation (2.15) provides us with the general form of the energy-momentum tensor 
distribution that describes the interaction between the multipole and the external 
electromagnetic field. 

* _I ..,In.̂ ---" -...- &.-....- 
J. "r*crg~Ucc "1 L l l c  ~ , ~ L , u m m m a ~ u ~ , , ~  sUc-r~;l-"'uLUS"LYLU LSLIW. 

In this section we wish to calculate the non-trivial part of the divergence of the 
energy-momentum tensor, that is, the divergence of eel,. From this divergence, as we 
shall see in section 4, the equation of motion for an arbitrary multipole is easily 
obtained. For this reason we present the calculation in some detail. 

4?r(J,@G, 4 ) = - 4 ~ ( 0 z , L 4 )  

From (2.10) and (2.12), we have 

Let us consider the region, of the space-time @ E ) ,  defined by the inequalities 
T ~ S  T,<T* and & < p S s u p n  p, & P O .  Since n is bounded, we can choose T ,  and 
such that n c n(o). Taking into account that + and all its derivatives vanish identically 
outside a, we may assume that the region of integration in (3.2) is n(o). Therefore, 
we can rewrite (3.2) as 
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which follows because of the Lebesgue-dominated convergence theorem. This form is 
more adequate to obtain the formula we are looking for. 

Integrating by parts, and using in a( E), J. J%s,,...,me = 0, it follows that 

, 

. 

where dB, is the surface element of the segment of the Bhabha tube p = E. 

Let us define, in f i ( ~ ) ,  the following tensor: 

(3.5) $["o, lo , . . .o"~ ~ J'sP","'."""- 

Since, in fi(~), J.JL~"."~.-."." = 0, we have 
J,$l"l"*...""" - - J ' J , , ~ s P " p ' . . " " "  = J'g"2...""" 

NOF, replaring (3.6) in  (?:4) and applying Stokes's theorem to the region B(E), 
we obtain, from (3.3), 

(3.7) LI + dB, %["1,2...,l,J,J " .  . . Jm'.[Ff,S41). 
JBC.1 J 

Using definition (2.11), every limit in (3.7) exists and is easy to calculate. Carrying 
out these calculations, (3.7) reduces to 

(JvO&,$)=- 1 drm"""".(T)J,, ... Jmn{F:Z4}[2(T)] V+E %(a). (3.8) 

From (2.7), (2.15), (3.8) and the well known result for the divergence of &de], 

" = I  " I  
" = O  " I  

we finally obtain 

(Ju8rm, 4) = - 1 drm"l..."",(T)d,, . . . J,a{F:Z4}[Z(T)1 v4 E 9(a). (3.9) 

We wish to conclude this section with two remarks. First, it is important to emphasize 
that (3.9) follows from the distribution definition of Be,, which is the only part of 0 
that becomes zero when the external field vanishes. Second, if Fex, is an infinitely 
differentiable function, (3.9) can be rewritten as 

(dvex,,,  4)  = -L KZ4) = -(F:Zj=, 6) vq5 E %(cl). (3.10) 
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Equation (3.10) tells us how the continuity of physical description is kept when the 
field and the energy-momentum tensor are well defined distributions. In this sense this 
result is consistent with the interpretation of eel,,, given in section 2. We note that (3.10) 
is not defined in general, but we can use (3.9) to define the distribution Fcs  j , ,  giving 
a meaning to (1.1) for point multipoles with e,,, well defined in the external field 
approach. 

4. Equations of motion 

In this section we derive the general form of the equation of motion for the case of a 
particle endowed with monopole, dipole and quadrupole electromagnetic moments. 
This particular case exhibits all the complications of the general situation of an arbitrary 
particle with several multipole moments. The equation of motion is extracted imposing 
local energy-momentum and angular momentum conservations. 

Let us define the tensor 

Equation (4.1) is a well defined distribution because the multipliers x are infinitely 
differentiable. 

Let us demand 
(i) energy-momentum conservation, that is 

(aver”, 4) = O  (4.2) 

(J ,M*~”,  4)=0 (4.3) 

(ii) angular momentum conservation, that is, 

(iii) the index M [see (1.5)] should have the lowest possible value consistent with 
(i) and (ii). 

Condition (iii) means that we choose the simplest K that is compatible with local 
conservation laws. 

It can be shown that M = 0 is incompatible with (4.2) and the quadrupolar structure. 
We note that, in the external field approach, (4.2) and (4.3) are compatible with a 
monopolar or dipolar structure for M =O.  Then, the conservation laws impose a 
structure of ‘spin’ for the quadrupole but not necessarily for the dipole. Of course, 
this is valid only in the external field approach. The structure of the particle must be 
more complicated if the radiation reaction is taken into account (for instance, even in 
the monopole case the conservation laws are not satisfied for M = 0 [171). 

Therefore, the next order to consider is M = 1. In this case, (1.5) gives 

K’”=  d r { r ” ( r ) + r ” ” * ( T ) J , } 6 [ X - Z ( 7 ) ] .  (4.4) J 
In order to obtain information from (4.2) and (4.3) let us break down the energy 

multipole moments r ”  and P“* into the forms 

rwv= mov’v’+ m’o“+n”u’+ ncy  (4.5) 

p ” A  = h*v’v‘+ hFAv‘+4”A*D”+h*“A (4.6) 
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where each index that does not label a U labels a quantity orthogonal to U. This 
decomposition leads to the notion of space and time parts of P" and YA. Similarly, 
we can decompose the charge-current quadrupole moment as 

" v 2 "  2 ~ " , [ " 2 u " l + ~ " , " 2 "  (4.7) 

where 

(4.8) 

It follows [5], that 8 is symmetric, 4 has the symmetries (1.7) and (1.9) of m, and 
X and A are orthogonal to U on all indices. X and 4 may be called the electric and 
magnetic parts of the charge-current quadrupole &. 

Replacing (4.5) and (4.6) in (4.4), integrating by parts and using (3.9), (4.7) and 
(4.8), (4.2) may be written I dT{ [~ (m,ul+mr-urh.u-hr .u~+F:r ,m, , .uV-%C"a.F: , , . -$B.ueF:~)  

XS", 
0,. 

or"* 
- ej%h -mmvJmF~x,v -* a,J.F:xt~] +[2(7)1 

- [ u p n e  + nPa +v'hf+a'hP+ bye- F.",,,m;@+ $B,"F:,,. 

+ *&'"P'' J.F&,.+2%-PUYJ=F:=~ylJe'#'[Z(T)l  

+[ u"q'""'+ h""" - F'"F:i v, -.II'""'^F:.,,]J.J"'#'[r( T)]] = O  (4.9) 

where 

(4.11) 

(4.13) 



where 

(4.23) 

(4.24) 

From (4.15) to (4.22), we see that the external electromagnetic field contributes 
dynamically to the ‘internal’ energy-momentum properties of the multipole particle. 
In earlier theories, for the quadrupole case, these terms do not appear explicitly. For 
another multipole, these dynamical contributions of the extemal field can be 
analogously obtained from (3.9) and the conservation laws (4.2) and (4.3). 

In order to compare part of our equations with previous findings, let us define the 
following tensors: 

S ~ ’ ~ ~ q [ * ‘ 1 - 2 h [ P o ” l  (4.25) 

(4.26) 

(4.27) 

Then, in terms of S”” and p’, (4.21) and (4.22) are written 

(4.28) d 
d7 
- (S+”+ S::) = 2 p [ ’ t 1 ” ~ + 2 p ~ ~ , v ” +  D’” 

where 

(4.30) 

(4.31) 

(4.32) 
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If we include Srs and p e t  in a new definition of spin and momentum of the particle, 
(4.28) and (4.29) coincide with earlier theories [3-61 when they are specified for the 
pole-dipole-quadrupole case. In this manner, earlier theories in the extemal field 
approach are dealt within equations (4.28) and (4.29). 

We conclude this section by pointing out that (4.28) and (4.29) need to be completed 
with additional equations in order to define uniquely the motion of the particle. For 
instance, we can use the following state equation: 

+,,*' =AS"' (4.33) 

which gives a relativistic generalization of the well known proportionality between the 
angular momentum vector and the magnetic moment vector. These supplementary 
conditions, corresponding to the final definition of the model, are outside the scope 
of Maxwell's equations and the local laws (4.2) and (4.3). 

5. Discussion 

We have shown that the strictly multipole point particle model can be completely 
incorporated with Maxwell's theory, in the external field approach, in a theory that 

(3.9) supplies a firm basis for the covariant formulation of the electrodynamics of a 
multipole point particle in an external electromagnetic field. 

One could argue that the external field approach should be derived from the 
equations including radiation effects instead of neglecting radiation reaction from the 
beginning. However, it is important to observe that inclusion of the radiation reaction 
contributions changes the equations of motion only in quadratic terms of the relevant 
parameters of the diverse multipoles (such parameters are: the magnitude of charge, 
the magnitude of magnetic dipole and so on, cf for example [6] and [l l]) .  On the 
other hand, the usual external field approach is a linear theory in the diverse multipoles. 
It is then a trivial matter to see that obtaining the external field approach by neglecting 
products between these characteristic parameters in the full equations is equivalent to 
neglecting Orrr from the beginning. 

From our results and from considerations of the radiation reaction problem (see 
1111 and [17]), and in spite of the partial success in the treatment of singularities in 
previous theories, we can conclude that with a distribution theory the classical electrody- 
namics of point models can be viewed in a new context. In fact the distribution theory 
establishes a coherent and precise framework in which the essential of point particles 
may he worked out more clearly. Also, it allows us to understand from a fundamental 
and unified standpoint that which had been hidden by other arguments (e.g. particular 
cut-off procedures). 

From (3.9), and using the conservation laws (4.2) and (4.31, we see that in order 
to satisfy local balance laws the multipole particle must have a minimal structure. This 
'material' structure grows as the order of the electromagnetic multipole grows. This 
situation is explicit in the calculations in section 4. Accordingly, if the radiation reaction 
is taken into account, it is evident that a similar relationship should hold true, the only 
difference being that the electromagnetic self-field renormalizes more quantities, thus 
giving additional structure to the multipole particle. 

Equations (4.15)-(4.22) are a list of properties that a point particle possessing up 
to quadrupole moments should satisfy in the external field approach. Thus, what we 

r-tisfies I_.nzmhlgue??s!y !xi?! b.12nce !zws nf energy znd nng??!zr mnmen!"!!!. Equz!ie" 
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have obtained in section 4 is a framework encompassing several kinds of quadrupolar 
particles rather than the theory of any particular quadrupole subject to its particular 
equations. The problem of considering the conditions that lead to a uniquely defined 
world line is obviously physically important. Indeed, it is related to the physical 
meaning of the quantities which appear in the equation of motion. All these 
considerations correspond to point out specific multipole models which need to be 
thoroughly investigated. For an arbitrary multipole point particle, some possible 

It could be useful to recapitulate the difference between our approach and some 
previous ideas. As we have already mentioned, other formulations of multipole point 
particles (see e.g. [31, [4], [a], [18] and [19]) when specified in the external field 
approximation, differ from our work in the treatment of O,,,. Indeed, [3], [4], [6], 
[18] and [191 do not have a theory for Oelm at the MWL. Nevertheless, these references 

(cut-off procedures, postulates) impose restrictions on the force and torque aning on 
the particle without clarifying its relationship with Maxwell's equations. Also, the 
prescriptions on J .  OeIm lead to the corresponding ones on J .  K (otherwise, there could 
be inconsistencies). On the other hand, our approach consists in defining Se,, from 
the solutions of Maxwell's equations, as a consequence we extract its divergence [given 
by (3.9)], and from it we ask for the simplest K such that J.(K+O.,,)=O. This 
difference in treatment leads to different results (see, e.g. for the quadrupole case, the 
term S:: in (4.28)). 

In the comparison of our results with those obtained by Dixon [5] for an extended 
charged body, we observe that he concludes that the only relations between the 
multipole moments imposed by the 'generalized conservation equations' are the con- 

tensor. On the other hand, for the strictly point model the situation seems completely 
different. In fact it is clear from section 4 that the consideration of multipole higher 
than quadrupole leads, even in the external field approach, to additional equations of 
motion for the energy-momentum multipoles that follow the spin. Nevertheless, we 
could arrange the additional equations in such a manner that they are automatically 
satisfied (as sta!e equations! and recover Dixon's statement. If this can be reasonably 
carried out, it is our opinion that this is one of the several possibilities of definitive 
models and not the only one for the strictly point multipole. 
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servation of charge and the equatinns of motion for the four momentum and the spin 
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